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Computing Mountain Passes∗

Jorge J. Moré,† and Todd S. Munson†

Abstract

We propose the elastic string algorithm for computing mountain passes in finite-
dimensional problems. We analyze the convergence properties and numerical perfor-
mance of this algorithm for benchmark problems in chemistry and discretizations of
infinite-dimensional variational problems. We show that any limit point of the elastic
string algorithm is a path that crosses a critical point at which the Hessian matrix is
not positive definite.

1 Introduction

A basic version of the mountain-pass theorem shows that if xa ∈ Rn is a strict minimizer of
a continuously differentiable function f : Rn 7→ R, and f has no critical points at infinity,
then there is a critical point x∗ in a path between xa and any xb ∈ Rn with f(xb) ≤ f(xa)
such that the value of f at x∗ is

γ = inf
p∈Γ
{max {f [p(t)] : t ∈ [0, 1]}} , (1.1)

where Γ is the set of all paths that connect xa with xb. This result is intuitively clear in R2

because in this case we cross a mountain pass by following a path for which the maximal
elevation is minimal.

The mountain-pass theorem forms the basis for calculating transition states in chem-
istry. The functions arising in the calculation of mountain passes for these problems are
typically potential energy surfaces for a system with xa and xb associated with stable states.
Analysis of the system requires knowing how the geometry and energy changes as the sys-
tem transitions between stable states. The mountain pass is of interest because it provides
the lowest energy required to transition between stable states.

There is a vast literature on algorithms for computing transition states. Early work
includes Bell, Crighton, and Fletcher [4], while recent work is reviewed by Henkelman,
Jóhannesson, and Jónsson [12]. We state here only that, as far as we know, the mountain-
pass theorem is not mentioned in any work on transition states from the computational
chemistry literature.

The mountain-pass theorem is also a fundamental tool in nonlinear analysis, where it
is used to prove existence results for variational problems in infinite-dimensional dynamical
∗This work was supported by the Mathematical, Information, and Computational Sciences Division

subprogram of the Office of Advanced Scientific Computing, U.S. Department of Energy, under Contract
W-31-109-Eng-38, and by the National Science Foundation (Information Technology Research) grant CCR-
0082807.
†Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, Illinois 60439

({more,tmunson}@mcs.anl.gov).

1



systems. The extension of the mountain-pass theorem to infinite-dimensional spaces, es-
tablished in 1973 by Ambrosetti and Rabinowitz [2], is widely considered to be a milestone
in nonlinear analysis. Algorithms for the computation of mountain passes for infinite-
dimensional spaces were not considered until Choi and McKenna [8] proposed an algorithm
for functionals of the form ∫

D

(
1
2‖∇u(s)‖2 − h[s, u(s)]

)
ds, (1.2)

where D is an open, bounded set in Rm for some m ≥ 1. These functionals are of interest
because the critical points are weak solutions to the semilinear partial differential equa-
tion −∆u(s) = g(s, u), where g(s, t) = ∂2h(s, t). Choi and McKenna [8] described their
algorithm in an infinite-dimensional setting so that, for example, the computation of the
steepest descent direction for the functional requires the solution of a linear partial differ-
ential equation. The work of Choi and McKenna has been extended and refined, but in
all cases the algorithms have been formulated in an infinite-dimensional setting. Moreover,
the algorithms are restricted to functionals of the form (1.2). Interesting numerical results
with this infinite-dimensional approach have been obtained by Chen, Zhou, and Ni [7]. We
refer to this paper and to the related papers [9, 14, 15] for additional information.

We propose the elastic string algorithm for the computation of mountain passes in finite-
dimensional problems. This algorithm is derived from the mountain-pass characterization
(1.1) by approximating Γ with the set of piecewise linear paths. We analyze the convergence
and numerical performance of this algorithm for benchmark problems in chemistry and
variational problems of the form (1.2).

Section 2 presents background for the mountain-pass theorem and related results. The
main ingredients in the mountain-pass theorem are the characterization (1.1), the Palais-
Smale condition, and the Ekeland variational principle.

Section 3 is dedicated to the variational problem (1.2). We analyze a class of functions
that includes finite-dimensional approximations to the variational problem (1.2), and we
show that these mappings satisfy the conditions of the mountain-pass theorem.

Section 4 presents the elastic string algorithm. The nudged elastic band algorithm
mentioned by Henkelman, Jóhannesson, and Jónsson [12] is related, but this algorithm is
based on an intuitive notion of how systems transition between stable stages. In particular,
there is no clear relationship between the nudged elastic band algorithm and the charac-
terization (1.1). The elastic string algorithm also differs from the algorithms (for example,
[9, 7, 14, 15]) based on the infinite-dimensional approach of Choi and McKenna [8] for
functionals of the form (1.2). These algorithms use only steepest descent searches and thus
are unlikely to be efficient on general problems. On the other hand, the finite-dimensional
approach based on the elastic string algorithm is applicable to any variational problem and
can use a wide variety of optimization algorithms.

The analysis of the elastic string algorithm appears in Sections 5 and 6. The results in
Section 5 are for functions with unbounded level sets, while Section 6 analyzes the case where
the functions have compact level sets. The results are closely related, but the assumptions
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for functions with compact level sets are stronger. The main results in these two sections
show that the iterates in the elastic string algorithm are bounded, and any limit point of
the iterates is a critical point at which the Hessian matrix is not positive definite.

Sections 7 describes our computational experiments. We discuss the computational
environment and note that the aim of these computational results is to show that the
elastic string algorithm provides a reasonable approximation to a mountain pass by using a
modest number of breakpoints in the elastic string. This is important because the number
of variables in the optimization problem in the elastic string algorithm is mn, where m is
the number of breakpoints in the piecewise linear path (elastic string).

Sections 8 and 9 present the numerical results for, respectively, transition states and
variational problems of the form (1.2). We regard these results as preliminary, and for
this reason the problems are of modest size. In particular, for the variational problems
(1.2) we use meshes for D with roughly 400 grid points. On the other hand, we consider
two reasonably interesting geometries for D: a circle, and a circle with a smaller square
removed from the center of the circle. These geometries give insight into the dependence of
a mountain-pass solution on the geometry of D.

2 Mathematics of Mountain Passes

Given a continuously differentiable function f : Rn 7→ R and two points xa and xb, we
seek a critical point on a path between xa and xb. A path that connects xa with xb is a
continuous function p : [0, 1] 7→ R

n such that p(0) = xa and p(1) = xb. If we use

Γ = {p ∈ C[0, 1] : p(0) = xa, p(1) = xb} (2.1)

to denote all paths between xa and xb, then a set S separates xa and xb if every path p ∈ Γ
intersects S; that is, there is a t ∈ (0, 1) such that p(t) ∈ S. As an example of a separating
set, note that the boundary ∂B(xa, r) of the ball

B(xa, r) = {x ∈ Rn : ‖x− xa‖ ≤ r}

separates xa and xb if r < ‖xb−xa‖. Separating sets may be unbounded. For example, the
hyperplane {x : 〈x, v〉 = α} separates xa and xb if 〈xa, v〉 < α and 〈xb, v〉 > α.

We require that the value of f on the separating set S be sufficiently high. Specifically,
we require that

inf{f(x) : x ∈ S} > max{f(xa), f(xb)}. (2.2)

The following result provides additional insight into requirement (2.2).

Lemma 2.1 Assume that f : Rn 7→ R is continuous on Rn, and define

γ = inf
p∈Γ
{max {f [p(t)] : t ∈ [0, 1]}} . (2.3)

3



There is a set S that separates xa and xb, and (2.2) holds if and only if γ > max{f(xa), f(xb)}.
Moreover, if γ > max{f(xa), f(xb)}, then {x ∈ Rn : f(x) = α} separates xa and xb for any
α with max{f(xa), f(xb)} < α ≤ γ.

Proof. Assume that γ > max{f(xa), f(xb)}. We show that

f−1(α) = {x ∈ Rn : f(x) = α}

separates xa and xb for any α with max{f(xa), f(xb)} < α ≤ γ. If p ∈ Γ, then f [p(t)] < α

for t ∈ {0, 1} by definition. We cannot have f [p(t)] < α for all t ∈ (0, 1) because then

γ ≤ max {f [p(t)] : t ∈ [0, 1]} < α,

and this contradicts that α ≤ γ. Hence, f [p(t)] ≥ α for some t ∈ (0, 1), and by continuity
f [p(t)] = α for some t ∈ (0, 1). This shows that f−1(α) separates xa and xb as desired.

Conversely, assume that S separates xa and xb and that (2.2) holds. If p ∈ Γ, then
p(t) ∈ S for some t ∈ (0, 1), and hence

max {f [p(t)] : t ∈ [0, 1]} ≥ f [p(t)] ≥ inf{f(x) : x ∈ S}.

Since this holds for all p ∈ Γ, we obtain that

γ ≥ inf{f(x) : x ∈ S} > max{f(xa), f(xb)}.

This is the desired result. �

The function f : R2 7→ R shown in Figure 2.1 illustrates Lemma 2.1 and motivates the
mountain-pass theorem. If xa and xb are chosen as the two minimizers, then xa and xb are
separated by a set S that satisfies (2.2). Indeed, the boundary of the ball ∂B(xc, r), where
xc is the minimizer with highest function value and r is sufficiently small, separates xa and
xb and satisfies (2.2). It is also clear from Figure 2.2 that f has a critical point on a path
that connects xa with xb, and that γ is a critical value.

We are concerned with mappings that may have unbounded level sets. Hence, we replace
the usual compactness assumption on the level sets with the following assumption.

Definition 2.2 Assume that f : Rn 7→ R is differentiable on the set C. The mapping f

satisfies the Palais-Smale condition on C if the existence of a sequence {xk} in C such that

lim
k→∞

f(xk) = α, lim
k→∞

∇f(xk) = 0,

for some α, implies that {xk} has a convergent subsequence.

From an optimization viewpoint, the Palais-Smale condition rules out critical points at
infinity, since an optimization algorithm is likely to generate a Palais-Smale sequence if f
is bounded below but does not have compact level sets.
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← f(x) = γ

Figure 2.1: A mountain pass with xa and xb separated by {x ∈ Rn : f(x) = γ}

If f has compact level sets, then f satisfies the Palais-Smale condition, but the converse
does not hold. For example, the function t 7→ t2−t4 satisfies the Palais-Smale condition but
does not have bounded level sets. Also note that if |f |+ ‖∇f‖ is coercive, then f satisfies
the Palais-Smale condition. The following result provides additional insight into the role of
the Palais-Smale condition.

Theorem 2.3 Assume that f : Rn 7→ R is differentiable on Rn. If f is bounded below
and satisfies the Palais-Smale condition on Rn, then f is coercive on Rn and achieves its
minimum.

Proof. The proof uses the differentiable version of the Ekeland variational principle: If
f : Rn 7→ R is differentiable and bounded below, and if xε satisfies

f(xε) ≤ inf {f(x) : x ∈ Rn}+ ε,

for some ε ≥ 0, then for any δ > 0 there is an y ∈ Rn such that

f(y) ≤ f(xε), ‖∇f(y)‖ ≤ ε

δ
, ‖y − xε‖ ≤ δ.

We use this result by defining appropriate sequences {xk}, {εk}, and {δk}. Assume, on the
contrary, that f is not coercive. Then there is a sequence {xk} such that ‖xk‖ → ∞ and
{f(xk)} is bounded above. If εk = f(xk)−µ, where µ = inf {f(x) : x ∈ Rn}, and δk = 1

2‖xk‖
in Ekeland’s variational principle, then there is a sequence {yk} with

f(yk) ≤ f(xk), ‖∇f(yk)‖ ≤ 2
f(xk)− µ
‖xk‖

, ‖yk − xk‖ ≤ 1
2‖xk‖.

Thus ‖∇f(yk)‖ converges to zero, {f(yk)} is bounded, and since

‖yk‖ ≥ ‖xk‖ − ‖yk − xk‖ ≥ 1
2‖xk‖,

the sequence {yk} does not have a convergent subsequence. This is not possible, however,
when f satisfies the Palais-Smale condition. �
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Our proof that f is coercive on Rn in Theorem 2.3 is a variation on the original proof of
Caklovic, Li, and Willem [6] but is included here because it uses the differentiable version of
Ekeland’s variational principle in an interesting fashion. The general version of the Ekeland
variational principle applies to lower semicontinuous functions in metric spaces and is a key
ingredient in the proof of the mountain-pass theorem. Aubin and Ekeland [3, Section 5.3]
discuss several applications of this variational principle.

Theorem 2.4 (Mountain-pass) Let f : Rn 7→ R be continuously differentiable on Rn,
and assume that the points xa and xb are separated by a closed set S such that (2.2) holds.
If f satisfies the Palais-Smale condition on Rn and γ is defined by (2.3), then γ is a critical
value of f .

The mountain-pass theorem is an essential tool in critical point theory where it is fre-
quently used to prove the existence of nontrivial solutions of nonlinear problems. The proof
of Theorem 2.4 can be found, for example, in Mawhin and Willem [16, Chapter 4] and
Ekeland [10, Chapter IV]. This version is an improvement over the original version of Am-
brosetti and Rabinowitz [2], where the separating set was the boundary of a ball centered
on xa.

The Palais-Smale condition is needed for the mountain-pass theorem. For example,
consider the function f : R2 7→ R defined by

f(ξ1, ξ2) = ξ2
1 + (1− ξ1)3ξ2

2 ,

and set xa = (0, 0) and xb = (2, 2). Then xa is a strict minimizer of f and f(xa) = f(xb).
Thus, ∂B(xa, r) separates xa and xb for r small enough, and (2.2) holds. However, xa is the
only critical point of f , so γ > 0 is not a critical value of f . In this case the mountain-pass
theorem fails to apply because the Palais-Smale condition does not hold.

The mountain-pass theorem guarantees the existence of a critical point but does not
provide information on the eigenvalue structure of points in the critical point set, that is,

Kγ = {x ∈ Rn : f(x) = γ, ∇f(x) = 0} ,

where γ is defined by (2.3). The characterization (2.3) does show that any x∗ ∈ Kγ cannot
be a strict minimizer, but the following result provides additional information.

Theorem 2.5 Let f : Rn 7→ R be twice continuously differentiable on Rn, and assume that
the points xa and xb are separated by a closed set S such that (2.2) holds and that f satisfies
the Palais-Smale condition on Rn. If x∗ ∈ Kγ and ∇2f(x∗) is nonsingular, then ∇2f(x∗)
has precisely one negative eigenvalue.

This result is due to Ambrosetti [1], but can also be derived from deeper results in
Morse theory. See for example, Chapter 8 in Mawhin and Willem [16]. We also note that
the number of negative eigenvalues of the Hessian ∇2f(x∗) is the Morse index of the critical
point. Thus, Theorem 2.5 can be restated as saying that if x∗ is a nondegenerate critical
point in Kγ , then the Morse index of x∗ is one. In our numerical results we use Theorem 2.5
to verify that the computed critical points are indeed mountain passes.
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3 Variational Problems

We are interested in the development of algorithms for finding mountain passes of finite-
dimensional problems. In particular, we focus on problems that arise as finite-dimensional
approximations to the variational problem∫

D

(
1
2‖∇u(s)‖2 − h[s, u(s)]

)
ds, (3.1)

where D is an open, bounded set in Rm for some m ≥ 1. We seek a function u : D 7→ R that
minimizes (3.1) over all suitably smooth functions that satisfy the boundary data u = uD.
In most of the applications uD ≥ 0 on ∂D, but in the remainder of the paper we assume,
without loss of generality, that uD ≡ 0.

Critical points of this variational problem are of interest because, under reasonable
conditions on D and h, the critical points of (3.1) over H1

0 (D) are precisely the weak
solutions of the semilinear partial differential equation

−∆u(s) = g(s, u), s ∈ D, h(s, t) =
∫ t

0
g(s, τ) dτ. (3.2)

Thus, if (3.1) has a critical point, then the existence of a solution to the differential equation
(3.2) is guaranteed. Cases of interest include

g(s, t) =


(t)p◦ Lane-Emden (p > 1)
(1/ε2)(t3 − t) Singularly perturbed Dirichlet
4π(t2 + 2t)3/2

◦ Chandrasekaran
‖s‖l(t)p◦ Henon (l > 0 and p > 1),

(3.3)

where (α)p◦ = |α|p−1α. These problems were considered by Chen, Zhou, and Ni [7], and we
use them for the numerical results in Section 9.

The use of the mountain-pass theorem to obtain existence results for the semilinear
differential equation (3.2) and related problems has been an active research area. Willem
[20] discusses these results. For the semilinear problem (3.2) existence of a solution is
guaranteed if g and h satisfy regularity assumptions that include growth conditions at t = 0
and t =∞. In particular, the existence results require that

lim sup
t→0

g(s, t)
t
≤ 0, and 0 < q h(s, t) ≤ g(s, t)t, |t| ≥ t0, s ∈ D, (3.4)

for constants q > 2 and t0 > 0. These conditions hold, in particular, for the equations listed
in (3.3).

The variational problem (3.1) usually has multiple solutions even if (3.4) holds. For
example, Struwe [18, Theorem 6.2] points out that (3.1) has at least two critical points
u2 ≥ 0 ≥ u1. Struwe [18, Theorem 6.6] also points out that if h is an even function, then
problem (3.1) has an infinite number of critical points. In our numerical results we explore
the properties of the mountain-pass critical points of (3.1).
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As noted in the introduction, the work of Choi and McKenna [8] led to a series of papers
(for example, [9, 7, 14, 15]) on algorithms for the computation of mountain passes for the
variational problem (3.1). Since these algorithms work directly with the functional (3.1),
the computation of the steepest descent direction requires the solution of a linear partial
differential equation. On the other hand, our algorithm is for general finite-dimensional
problems; hence, we are not restricted to functionals of the form (3.1).

The following result will be used to show that finite-dimensional approximations to the
variational problem (3.1) have mountain passes.

Theorem 3.1 Assume that A ∈ Rn×n is positive definite, and define f : Rn 7→ R by

f(x) = 1
2〈x,Ax〉 −H(x),

where H : Rn 7→ R is continuously differentiable with

lim sup
x→0

H(x)−H(0)
‖x‖2

≤ 0, lim
‖x‖→∞

H(x)−H(0)
‖x‖2

= +∞. (3.5)

Then f has a critical point x∗ with f(x∗) > f(0). In addition,

lim
‖x‖→∞

f(x)− f(0)
‖x‖2

= −∞, (3.6)

Proof. We prove that the assumptions of the mountain-pass theorem are satisfied with
xa = 0, any xb with ‖xb‖ sufficiently large, and S = ∂B(0, r), where r > 0 is sufficiently
small.

We first show that f(x) > f(0) for ‖x‖ = r and r > 0 sufficiently small. Let σ1 > 0 be
the smallest eigenvalue of A, and note that

f(x)− f(0)
‖x‖2

≥ σ1 −
H(x)−H(0)
‖x‖2

.

Thus,

lim inf
x→0

f(x)− f(0)
‖x‖2

≥ σ1,

so that f(x) > f(0) for x ∈ ∂B(0, r) and r sufficiently small. Similarly,

f(x)− f(0)
‖x‖2

≤ σn −
H(x)−H(0)
‖x‖2

,

where σn = ‖A‖2, and thus (3.6) holds. In particular, f(xb) < f(0) for ‖xb‖ sufficiently
large. Hence, the assumptions on xa, xb, and S of the mountain-pass theorem are satisfied,
and thus γ > f(0).

We note that the Palais-Smale condition holds, since (3.6) shows that {f(xk)} is un-
bounded below if {‖xk‖} is unbounded. Hence, the mountain-pass theorem guarantees that
there is a critical point x∗ with f(x∗) = γ > max{f(xa), f(xb)} = f(0). �
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The simplest function that satisfies the assumptions of Theorem 3.1 is obtained if A is
the identity matrix and H is a multiple of ‖x‖p for p > 2. If

f(x) =
1
2
‖x‖2 − 1

p
‖x‖p,

then all the assumptions of Theorem 3.1 are satisfied. In this case all x with ‖x‖ = 1 are
critical points, and there is another critical point at x = 0.

In general, the growth condition (3.5) near x = 0 implies that ∇H(0) = 0, but the
converse does not hold. Thus, under the assumptions of Theorem 3.1, f has a critical point
at the origin and another critical point x∗ 6= 0.

The growth conditions of Theorem 3.1 are satisfied when H is a finite-dimensional
approximation to the variational problem (3.1). In this case, a finite-difference or finite-
element approximation to the integral in (3.1) leads to a mapping H of the form

H(x)−H(0) =
n∑
i=1

αih(si, xi), αi > 0,

where αi are the weights, si ∈ D, xi are approximations to u(si), and H(0) contains
boundary data. We assume that the mapping h in (3.1) is continuous in D×R and satisfies

lim sup
t→0

h(s, t)
t2

≤ 0, and lim
t→∞

h(s, t)
t2

=∞, s ∈ D. (3.7)

If these assumptions hold, then the mapping H satisfies the assumptions of Theorem 3.1.
We prove this by first noting that the mapping H has the desired behavior near x = 0
because for any index i we have

lim sup
x→0

h(s, xi)
‖x‖2

= lim sup
x→0

(
h(s, xi)
x2
i

)(
|xi|
‖x‖

)2

≤ 0,

and αi > 0. Proving that H has the desired behavior at infinity requires a more elaborate
argument. First we note that there is an r > 0 such that h(s, t) ≥ 0 for |t| ≥ r and that by
continuity of h there is a µ > 0 such that h(s, t) ≥ −µ for |t| ≤ r. Hence,

lim inf
‖x‖→∞

h(si, xi)
‖x‖2

≥ 0

for all indices i. Moreover, there is at least one index i with

lim sup
x→0

h(s, xi)
‖x‖2

= lim sup
x→0

(
h(s, xi)
x2
i

)(
|xi|
‖x‖

)2

= +∞.

Since αi > 0 for all indices i, this proves that H has the desired behavior at infinity.
The growth conditions (3.7) on h are weaker than the growth conditions (3.4) required

for the infinite-dimensional problem. A short computation shows that condition (3.4) on g
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at t = 0 implies condition (3.7) on h at t = 0. For the conditions at t =∞, integrating the
second inequality in (3.4) shows that

h(s, t) ≥ h(s, t0)
(
|t|
t0

)q
, |t| ≥ t0.

Since q > 2, condition (3.7) at infinity clearly holds.
Verifying that the growth conditions (3.7) hold in particular cases is not difficult. Clearly,

condition (3.7) at t = 0 is satisfied if g(s, 0) = 0 and ∂2g(s, 0) ≤ 0. Moreover, g(s, 0) = 0
and ∂2g(s, 0) ≤ 0 for all the mappings in (3.3).

The super-quadratic growth condition (3.7) at t = ∞ can be verified by direct compu-
tation. For example, for the Lane-Emden equation h(s, t) = |t|p+1/(p+ 1), and since p > 1,
the growth is super-quadratic. In a similar fashion, for the Chandrasekaran function one
can show that h(s, t) ≥ α1|t|3 + α2 for some constants α1 and α2 with α1 > 0.

4 The Elastic String Algorithm

The elastic string algorithm is derived from the mountain-pass characterization (2.3) by
restricting the paths connecting xa with xb to be piecewise linear with m breakpoints and
choosing the breakpoints optimally. Thus, consider the optimization problem

min
p∈Γπ

{max {f [p(tk)] : 1 ≤ k ≤ m}} , (4.1)

where π = {t0, . . . , tm+1} is a partition of [0, 1] with t0 = 0 and tm+1 = 1;

PL[0, 1] =
{
p ∈ C[0, 1] : p(0) = xa, p(1) = xb, p linear on (tk, tk+1), 0 ≤ k ≤ m

}
is the set of piecewise linear paths that connect xa with xb; and

Γπ =
{
p ∈ PL[0, 1] :

∫ 1

0
‖p′(t)‖ dt ≤ L

}
is the set of piecewise linear paths that connect xa with xb with length bounded by L. If
p ∈ Γπ is parameterized by the breakpoints xk = p(tk) for 1 ≤ k ≤ m, then

p(t) =
t− tk

tk+1 − tk
xk+1 +

tk+1 − t
tk+1 − tk

xk, t ∈ [tk, tk+1].

In particular, p′ satisfies

‖p′(t)‖ =
‖xk+1 − xk‖
tk+1 − tk

, t ∈ (tk, tk+1),

and thus p has length bounded by L if and only if

‖xk+1 − xk‖ ≤ hk, 0 ≤ k ≤ m,
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for some bounds hk > 0, where
m∑
k=0

hk = L. (4.2)

This shows that the optimization problem (4.1) can be solved by generating the breakpoints
x1, . . . , xm in the piecewise linear path via the optimization problem

min {ν(x) : ‖xk+1 − xk‖ ≤ hk, 0 ≤ k ≤ m} , (4.3)

where
ν(x) = max {f(x1), . . . , f(xm)} . (4.4)

This is an optimization problem over vectors x ∈ Rmn, where x has the (vector) components
x1, . . . , xm, and each component xi ∈ Rn.

We analyze the elastic string algorithm as m increases, but we usually suppress the
dependence on m unless this is required for clarity. For emphasis, the term “level” is used
to refer to m. We assume that the bound L satisfies ‖xb − xa‖ ≤ L so that the compact,
convex set

Ω = {x ∈ Rn : ‖x− xa‖ ≤ L, ‖x− xb‖ ≤ L} = B(xa, L) ∩B(xb, L)

is nonempty. Further, the length Lm of the path is allowed to vary with m because we do
not know a priori the length of a path passing through a mountain pass. We assume that

lim
m→∞

Lm
m

= 0.

Although the bound Lm is allowed to increase with m, we show that under suitable condi-
tions, Lm is increased only a finite number of times.

We assume that the bounds {hk} are chosen to be quasi-uniform in the sense that

max{hk : 0 ≤ k ≤ m} ≤ κmin{hk : 0 ≤ k ≤ m}, (4.5)

for some constant κ ≥ 1. The quasi-uniform condition (4.5) shows that

1
κ

(
L

m+ 1

)
≤ min{hk : 0 ≤ k ≤ m} ≤ max{hk : 0 ≤ k ≤ m} ≤ κ

(
L

m+ 1

)
.

Under this assumption, the mesh spacings {hk} converge to zero as m increases, as can be
seen from the assumptions made on Lm and the inequality above that relates the maximal
and minimal mesh spacing {hk} .

If f : Rn 7→ R is continuous on some open set that contains Ω, then the optimization
problem (4.3) has a continuous objective function ν and a compact feasible set. Indeed, all
the feasible points lie in the compact set

{x ∈ Rmn : xk ∈ Ω}
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in Rmn. Hence, (4.3) has a minimizer. In the elastic string algorithm the breakpoints
x1, . . . , xm can be any critical point of the optimization problem (4.3).

The analysis of the elastic string algorithm is based on an equivalent formulation of the
optimization problem (4.3). We consider the optimization problem

min {ν : f(xk) ≤ ν, 1 ≤ k ≤ m, ck(x) ≤ 0, 0 ≤ k ≤ m} , (4.6)

where ck : Rmn 7→ R are the constraints

ck(x) = 1
2

(
‖xk+1 − xk‖2 − h2

k

)
.

The following result shows that the constraints of this optimization problem satisfy a con-
straint qualification.

Lemma 4.1 If f : Rn 7→ R is continuously differentiable on some open set that contains
Ω, then the active constraint gradients of problem (4.6) are positively linearly independent.

Proof. If we define the constraints dk : Rmn 7→ R by dk(x) = f(xk) − ν for 1 ≤ k ≤ m,
then we need to show that if∑

k∈A
αk

(
−1
∇dk(x)

)
+
∑
k∈B

βk

(
0

∇ck(x)

)
= 0, αk ≥ 0, βk ≥ 0,

where A is the set of active dk constraints and B is the set of active ck constraints, then
αk ≡ 0 and βk ≡ 0, Clearly, this condition implies that∑

k∈A
αk = 0,

and since αk ≥ 0, we must have αk ≡ 0 for any choice of A. We now prove that the active
constraint gradients ∇ck(x) are linearly independent, that is, if∑

k∈B
βk∇ck(x) = 0,

then βk ≡ 0. We proceed by direct computation. We define sk = xk+1 − xk and note that
the representation ∇ck(x) = (ci,k) in terms of components ci,k ∈ Rn is ci,k = 0 for i < k or
i > k+ 1, ck,k = −sk and ck+1,k = sk. Thus, if l is the first index such that βl 6= 0, then the
above condition implies that βlsl = 0. Since ‖sl‖ = hl > 0 for l ∈ B, we have βl = 0. This
contradiction shows that the active constraint gradients ∇ck(x) are linearly independent.
�

Lemma 4.1 shows that the Kuhn-Tucker conditions for the optimization problem (4.6)
hold with multipliers λk ≥ 0 and µk ≥ 0. Thus, if we define the constraints dk : Rmn 7→ R

12



by dk(x) = f(xk) − ν for 1 ≤ k ≤ m, then the first-order Kuhn-Tucker conditions are the
mn+ 1 equations,(

1
0

)
+

m∑
k=1

λk

(
−1
∇dk(x)

)
+

m∑
k=0

µk

(
0

∇ck(x)

)
= 0;

the restrictions λk ≥ 0 and µk ≥ 0 on the sign of the multipliers; and the complementarity
conditions

λk(f(xk)− ν) = 0, 1 ≤ k ≤ m, µk(‖sk‖ − hk) = 0, 0 ≤ k ≤ m, (4.7)

where sk = xk+1 − xk. The first equation in the Kuhn-Tucker conditions implies that the
multipliers λk satisfy the condition

m∑
k=1

λk = 1, (4.8)

while the remaining mn equations can be written in the form

λk∇f(xk) = µksk − µk−1sk−1, 1 ≤ k ≤ m. (4.9)

These equations follow from the Kuhn-Tucker conditions by noting that the representation
of ∇dk(x) = (di,k) in terms of components di,k ∈ Rn is dk,k = ∇f(xk) and di,k = 0 for i 6= k,
while as noted in the proof of Lemma 4.1, the representation of ∇ck(x) = (ci,k) in terms of
components ci,k ∈ Rn is ci,k = 0 for i < k or i > k + 1, ck,k = −sk and ck+1,k = sk.

In the next two sections we use the Kuhn-Tucker conditions (4.7–4.9) to analyze the
convergence of the elastic string algorithm.

5 Convergence Analysis: Unbounded Level Sets

In our analysis of the elastic string algorithm we assume that we are given a continuously
differentiable mapping f : Rn 7→ R, two points xa and xb, and a closed set S that separates
xa and xb with (2.2). Our aim is to provide a constructive proof of the mountain-pass
theorem.

We label the indices where the multipliers λk > 0 by k1, . . . , kl, where ki ≤ ki+1. The
complementarity condition (4.7) implies that f(xk) is maximal for k1, . . . , kl, that is,

f(xk) = ν = max {f(xj) : 1 ≤ j ≤ m} , k = k1, . . . , kl. (5.1)

As a consequence of this definition, λk = 0 for ki < k < ki+1. For the results below, we set
k0 = 0 and kl+1 = m+ 1.

Lemma 5.1 Define k1, . . . , kl by requiring that λk > 0 if and only if k = k1, . . . , kl. Then

1
κ
µj ≤ µki ≤ κµj , ki ≤ j < ki+1, 0 ≤ i ≤ l.

13



Proof. Since λj = 0 for ki < j < ki+1, the Kuhn-Tucker condition (4.9) shows that

µjsj = µj−1sj−1, ki < j < ki+1.

Hence, the complementarity condition (4.7) implies that

µjhj = µj−1hj−1, ki < j < ki+1.

In particular, µkihki = µjhj for ki ≤ j < ki+1. The result now follows from the quasi-
uniform condition (4.5) on {hk}. �

Lemma 5.1 shows, in particular, that if µk > 0 for k = k0, . . . , kl, then all the multipliers
µk are positive. We now analyze this situation and show that in this case the path p has at
most l kinks, that is, breakpoints tk where the derivative p′ is not continuous. Since

lim
t→t+k

p′(t) =
xk+1 − xk

hk
=
sk
hk
,

the path p has a kink at tk if and only if hk−1sk 6= hksk−1.

Lemma 5.2 If µki > 0 for all 0 ≤ i ≤ l, then the piecewise linear path p that connects xa
with xb via x1, . . . , xm has at most l kinks occurring at tki for 1 ≤ i ≤ l. Moreover,

l∑
i=0

‖xki+1
− xki‖ = L,

and thus the path p has length L.

Proof. Lemma 5.1 implies that µj > 0 for ki < j < ki+1. Since λj = 0 for ki < j < ki+1,
the Kuhn-Tucker condition (4.9) shows that

µjsj = µj−1sj−1, ki < j < ki+1.

In particular, µkiski = µjsj for ki ≤ j < ki+1. Since all the multipliers µj are positive,
the points xj with ki ≤ j ≤ ki+1 are collinear, and thus the piecewise linear path p that
connects xa with xb via x1, . . . , xm has at most l kinks. In addition, since

‖xki+1
− xki‖ =

ki+1−1∑
j=ki

hj ,

the path p has length L. �

The case where the assumptions of Lemma 5.2 hold should be considered rare, since
in general we expect some of the multipliers µk to be zero. If the elastic string algorithm
computes a path of length L, this usually indicates that the bound L is too small and that
it should be increased when m is increased. Therefore, we set

L = min
{
ηL,m1/2‖xb − xa‖

}
, η > 1,

14



whenever µk > 0 for all k. This updating rule guarantees that if Lm → ∞, then {Lm/m}
converges to zero. Thus, as noted earlier, the mesh spacings {hk} converge to zero.

In the remainder of this section, we analyze the elastic string as the level changes over a
sequenceM. We assume that the number l of indices where λk > 0 is bounded, independent
of the level m. This is a technical assumption that is likely to be satisfied by most problems
but can rule out problems where the mountain pass is degenerate. Since f(xk) approximates
f [p(tk)], where p is a piecewise linear (continuous) function, we expect to have l ≤ 2 in most
cases, and this is certainly what our numerical results show.

We show next that L is updated only a finite number of times. This requires a growth
assumption on f . We assume that there is an r > 0 such that

f(x) ≤ max{f(xa), f(xb)}, ‖x− xa‖ ≥ r. (5.2)

This assumption clearly holds for functions that satisfy the assumptions of Theorem 3.1,
since in this case f(x)→ −∞ as ‖x‖ → ∞.

Although assumption (5.2) is natural for functions considered in Section 2, this assump-
tion rules out coercive functions. As we shall see, this case requires different assumptions,
and thus we delay consideration of this case.

An important consequence of (5.2) is that the separating set S is compact. Indeed, (2.2)
shows that (5.2) cannot hold for x ∈ S. Hence, ‖x − xa‖ < r for x ∈ S, and thus S is
compact. We use the compactness of S in the next result.

Lemma 5.3 Let f : Rn 7→ R be twice continuously differentiable on Rn, and assume that the
points xa and xb are separated by a closed set S such that (2.2) holds. Assume, in addition,
that l is bounded, independent of the level. If (5.2) holds, then there is no sequence of levels
M such that µki > 0 for all i with 0 ≤ i ≤ l.

Proof. Assume, on the contrary, that there is a sequence of levels M such that µki > 0
for all i with 0 ≤ i ≤ l. Hence, the updating rules for L show that L → ∞ as the level m
increases. Since Lemma 5.2 guarantees that

l∑
i=0

‖xki+1
− xki‖ = L,

and since L→∞, we obtain that for m large enough,

max {‖xki − xa‖ : 1 ≤ i ≤ l} ≥ L

(2l + 1)
≥ r,

and thus assumption (5.2) on the behavior of f implies that

f(xki) ≤ max{f(xa), f(xb)},

for some index i. Since f(xki) ≥ f(xk), assumption (2.2) on S shows that we actually have

f(xk) ≤ max{f(xa), f(xb)} < inf{f(x) : x ∈ S}, 1 ≤ k ≤ m.
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This inequality is not possible because, as we now show, there is an index k such that some
subsequence of {xk} converges to an element x∗ ∈ S. We establish this claim by first noting
that since all paths from xa to xb intersect S, there is a ξ ∈ (0, 1) such that p(ξ) ∈ S.
Moreover, if tk is the closest mesh point to ξ, then

‖xk − p(ξ)‖ = ‖p(tk)− p(ξ)‖ ≤ hk.

Since S is compact, p(ξ) ∈ S, and {hk} converges to zero, some subsequence of {xk}
converges to an element x∗ ∈ S. This establishes the claim and completes the proof. �

Lemma 5.3 shows that for m large enough, L is eventually constant. Thus, Ωm does not
change for m large enough, and this guarantees that all the iterates remain in a compact
set. In particular, all the iterates are bounded. Lemma 5.3 also guarantees that there is a
sequence of levels M and an index i with 0 ≤ i ≤ l such that µki = 0 for all levels in M.
This key result is the basis for the convergence results.

The behavior of the multipliers µki is another essential ingredient in the convergence
proof. The next result is used to prove that all sequences {µki} are bounded.

Lemma 5.4 Let f : Rn 7→ R be twice continuously differentiable on some open set that
contains Ω, and assume that the points xa and xb are separated by a closed set S such that
(2.2) holds. Assume, in addition, that l is bounded, independent of the level. If (5.2) holds,
then {µki} is bounded on some sequence M of levels if and only if {µki−1} is bounded on
M.

Proof. We first note that Lemma 5.3 shows that Ω is compact, since L is updated only a
finite number of times. This fact is used in the remainder of the proof.

We rule out the case where k1 = 1 or kl = m with an argument drawn from the proof of
Lemma 5.3. Let p be the path that connects xa with xb with breakpoints x1, . . . , xm. Since
all paths from xa to xb intersect S, there is an ξ ∈ (0, 1) such that p(ξ) ∈ S. Hence, using
(2.2), we have

f [p(ξ)] ≥ inf{f(x) : x ∈ S} ≥ γ > max{f(xa), f(xb)}.

If tk is the closest mesh point to ξ, then ‖xk − p(ξ)‖ ≤ hk. Hence, {xk} and {p(ξ)} have
a common subsequence that converges to an element x∗ ∈ S as m → ∞ because {xk} lies
in a compact set, p(ξ) ∈ S, and {hk} converges to zero. Thus, the above inequality shows
that for any α such that max{f(xa), f(xb)} < α < γ,

f(xk) ≥ α > max{f(xa), f(xb)},

if the level m is sufficiently large. Since f(xki) ≥ f(xk) for 1 ≤ i ≤ l, this proves, in
particular, that xki cannot converge to either xa or xb. Thus, k1 > 1 and kl < m for all
levels large enough.

We now show that the multipliers {µki} is bounded if {µki−1} is bounded. We bound
µki by noting that

f(xki+1) = f(xki) + 〈∇f(xki), ski〉+ 1
2〈ski , Akiski〉,
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where Aki = ∇2f(xki + ξkiski) for some ξki ∈ (0, 1). The sequence {‖Aki‖} is uniformly
bounded because ∇2f is bounded on the compact, convex set Ω. Thus, since ki ≤ kl < m,
we must have f(xki+1) ≤ f(xki) and

〈∇f(xki), ski〉 ≤ −1
2〈ski , Akiski〉 ≤

1
2σh

2
ki
,

where σ is an upper bound on ‖Aki‖. This bound and (4.9) imply that

µki‖ski‖
2 = µki−1〈ski−1, ski〉+ λki〈∇f(xki), ski〉 ≤ µki−1hki−1hki + 1

2σh
2
ki
.

Hence, the complementarity condition (4.7) and the quasi-uniform condition (4.5) on {hki}
imply µki ≤ κµki−1 + 1

2σ. This shows that that {µki} is bounded if {µki−1} is bounded.
The proof of the converse is similar, with only minor changes in the argument. We

assume that {µki} is bounded and show that {µki−1} is bounded. In this case we bound
µki−1 by noting that

f(xki−1) = f(xki)− 〈∇f(xki), ski−1〉+ 1
2〈ski−1, Akiski−1〉,

where Aki = ∇2f(xki− ξkiski−1) for some ξki ∈ (0, 1). Since ki ≥ k1 > 1, we can assert that
f(xki−1) ≤ f(xki), and hence

〈∇f(xki), ski−1〉 ≥ 1
2〈ski−1, Akiski−1〉 ≥ −1

2σh
2
ki−1,

where σ is an upper bound on ‖Aki‖. Thus, this bound and (4.9) imply that

µki−1‖ski−1‖2 = µki〈ski−1, ski〉 − λki〈∇f(xki), ski−1〉 ≤ µkihki−1hki + 1
2σh

2
ki−1.

Hence, the complementarity condition (4.7) and the quasi-uniform condition (4.5) on {hki}
imply that µki−1 ≤ κµki + 1

2σ, as desired. �

We now use Lemma 5.4 to prove that all sequences {µki} are bounded, and thus
‖∇f(xki)‖ converges to zero for some index i as m→∞.

Theorem 5.5 Let f : Rn 7→ R be twice continuously differentiable on some open set that
contains Ω, and assume that the points xa and xb are separated by a closed set S such that
(2.2) holds. Assume, in addition, that l is bounded, independent of the level. If the growth
condition (5.2) holds, then

lim
m→∞

min {‖∇f(xki)‖ : 1 ≤ i ≤ l} = 0. (5.3)

Proof. We need to show that for any sequence there is a finer subsequence M such that
‖∇f(xki)‖ converges to zero for some index i.

Lemma 5.3 shows that for any sequence there is a finer subsequence M and an index i
with 0 ≤ i ≤ l such that µki = 0 for all levels inM. Actually, to reach the desired conclusion
we need to know only that there is a sequence of levels M and an index i with 0 ≤ i ≤ l
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such that {µki} is bounded. We claim that all {µki} are bounded. Lemma 5.1 implies that
{µk} is bounded for all ki ≤ k < ki+1. We can now use Lemma 5.4 to guarantee that {µk}
is bounded for all ki − 1 ≤ k ≤ ki+1. Moreover, now that we know that {µk} is bounded
for k = ki− 1, we can conclude from Lemma 5.1 that {µk} is bounded for k = ki−1. Hence,
{µk} is bounded for k = ki−1 and k = ki+1. Since there are only l subsequences ki, . . . , kl,
this argument can be repeated to show that {µki} are bounded for all 0 ≤ i ≤ l.

We now assert that if there is a sequence of levelsM such that all sequences {µki} with
0 ≤ i ≤ l are bounded, then ‖∇f(xki)‖ converges to zero for some index i. Condition (4.8)
on the multipliers implies that there is an index i with 1 ≤ i ≤ l such that λki ≥ 1/(1+l) > 0.
Since l is independent of the level m, {λki} is bounded away from zero. Moreover, (4.9)
implies that

λki‖∇f(xki)‖ ≤ µkihki + µki−1hki−1.

Since {hki} converges to zero and all µki are bounded for levels in M, we have shown that
‖∇f(xki)‖ converges to zero as desired. �

We now investigate the behavior of the sequence of piecewise linear paths {pm} generated
by the elastic string algorithm, where pm is defined by setting pm(tk) = xk for 0 ≤ k ≤ m+1,
and {tk} is a quasi-uniform partition of [0, 1].

Theorem 5.6 Let f : Rn 7→ R be twice continuously differentiable on some open set that
contains Ω, and assume that the points xa and xb are separated by a closed set S such that
(2.2) holds. Assume, in addition, that l is bounded, independent of the level. If the growth
condition (5.2) holds, then any limit point of the paths {pm} generated by the elastic string
algorithm is a path p∗ that crosses a critical point x∗ of f . Moreover, {pm} has at least one
limit point.

Proof. Since all the iterates {xk} are bounded, the sequence of paths {pm} is uniformly
bounded. Moreover, {pm} is equicontinuous, since |tβ − tα| ≤ max{tk+1 − tk} implies that

‖pm(tβ)− pm(tα)‖ ≤ max{hk},

and {hk} converges to zero. In particular, any limit point of {pm} is continuous. Moreover,
the Arzela-Ascoli theorem shows that {pm} has a limit point p∗ ∈ C[0, 1]. Hence, p∗ is a
path that connects xa with xb.

We now show that p∗ crosses some critical point of f . Theorem 5.5 shows that ‖∇f(xki)‖
converges to zero for some index i, and since all the iterates are bounded, {xki} has a limit
point x∗ with ∇f(x∗) = 0. Thus, if we define tki by pm(tki) = xki , then p∗(t) = x∗ for some
t ∈ [0, 1] as desired. �

We have shown that the elastic string algorithm is guaranteed to find a critical point,
but not a critical point of least function value. That is, there is no guarantee that if ν∗ is
a limit point of {νm}, then ν∗ = γ, where γ is defined by (2.3). We also know little about
the eigenvalue structure of this critical point, but we now show that this critical point is
not likely to be a minimizer.
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Theorem 5.7 Let f : Rn 7→ R be twice continuously differentiable on some open set that
contains Ω, and assume that the points xa and xb are separated by a closed set S such that
(2.2) holds. Assume, in addition, that l is bounded, independent of the level. If the growth
condition (5.2) holds, then

lim sup
m→∞

min
{

Λ1

[
∇2f(xki)

]
: 1 ≤ i ≤ l

}
≤ 0, (5.4)

where Λ1[A] is the smallest eigenvalue of the symmetric matrix A.

Proof. We need to show that for every sequence there is a finer subsequence M such that

Λ1

[
∇2f(xki)

]
≤ 0.

for some index i with 1 ≤ i ≤ l. Lemma 5.3 shows that for every sequence of levels there
is a finer subsequence M and an index i with 0 ≤ i ≤ l such that µki = 0. Hence, either
there is an index j with 1 ≤ j ≤ l such that µkj−1

= 0 and µkj > 0, or µkj = 0 for all j with
1 ≤ j ≤ l. We consider these two cases.

If there is an index j with 1 ≤ j ≤ l such that µkj−1
= 0 and µkj > 0, then we argue as

in the proof of Lemma 5.4 by first noting that the mean value theorem implies that

f(xkj+1) = f(xkj ) + 〈∇f(xkj ), skj 〉+ 1
2〈skj , Akjskj 〉,

where Akj = ∇2f(xkj + ξkjskj ) for some ξkj ∈ (0, 1). Since kj < m and f(xkj+1) ≤ f(xkj ),

1
2〈skj , Akjskj 〉 ≤ −〈∇f(xkj ), skj 〉.

We have chosen kj so that µkj > 0 and µkj−1 = 0, and thus (4.9) implies that

λkj 〈∇f(xkj ), skj 〉 = µkj‖skj‖
2 = µkjh

2
kj
> 0.

The last two inequalities show that 〈skj , Akjskj 〉 < 0, and thus, for sufficiently large m, we
have that Λ1

[
∇2f(xkj )

]
≤ 0, as desired.

The argument in the case where µkj = 0 for all j with 1 ≤ j ≤ l is similar. In this case,
(4.9) implies that ∇f(xkj ) = 0, and thus the above argument yields that

f(xkj+1) = f(xkj ) + 1
2〈skj , Akjskj 〉.

Since l is bounded, independent of the level, we can choose kj so that f(xkj+1) < f(xkj ),
and then 〈skj , Akjskj 〉 < 0 as desired. �

Theorem 5.7 shows that there is an index i such that Λ1

[
∇2f(x∗)

]
≤ 0 for any limit

point x∗ of {xki}, and thus if ∇2f(x∗) is nonsingular, then the Hessian matrix has at least
one negative eigenvalue. This implies that the elastic string algorithm is likely to find a
mountain pass. In future work we will examine the conditions under which the elastic string
algorithm is guaranteed to find a critical point that satisfies the conditions of Theorem 2.5,
that is, a critical point with precisely one negative eigenvalue.
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6 Convergence Analysis: Bounded Level Sets

Our convergence results, Theorem 5.5 and 5.7, were obtained under the growth assumption
(5.2), and, as we have observed, this assumption rules out coercive functions. We can
generalize the convergence results by noting that the key result in the convergence theory
of the elastic string algorithm is Lemma 5.3. Once we show that there is no sequence of
levels M such that µki > 0 for all i with 0 ≤ i ≤ l, then all the convergence results follow.
Lemma 5.3 implies, in particular, that Lm is updated a finite number of times, and thus
Ωm is fixed for m large enough. Hence, all the breakpoints {xk} are uniformly bounded,
independent of the level m.

We can obtain a convergence theory for coercive functions by showing that the values
of νm in the elastic string algorithm are bounded. In particular, assume that given p0 ∈ Γ,
the critical point of problem (4.6) chosen by the elastic string algorithm satisfies

νm ≤ max {f [p0(t)] : t ∈ [0, 1]} , (6.1)

where νm is the value of the optimization problem (4.6) at a critical point. This is a natural
requirement because νm satisfies (6.1) when p0 is the piecewise linear path generated by the
elastic string algorithm. We are requiring, however, that (6.1) hold for a fixed p0 ∈ Γ.

We can satisfy (6.1) by imposing an additional requirement on the optimization algo-
rithm used to solve (4.6) and by choosing the initial point in the optimization algorithm so
that

ν(x0) ≤ max {f [p0(t)] : t ∈ [0, 1]} , (6.2)

where ν : Rmn 7→ R is defined by (4.4). We now show how to satisfy (6.1) and (6.2) in
terms of the optimization problem (4.3), that is,

min {ν(x) : c(x) ≤ 0} ,

where c : Rmn 7→ R
m+1 are the constraints in (4.3); the discussion carries over to (4.6).

We require that if a feasible starting point x0 is chosen for (4.3), then the optimiza-
tion algorithm determines a critical point x∗ such that ν(x∗) ≤ ν(x0). Clearly, if this
requirement holds and if the starting point x0 satisfies (6.2), then (6.1) holds. We can meet
this requirement by using a feasible optimization algorithm such as the feasible sequential
quadratic programming algorithm of Lawrence and Tits [13]. Another option is to use a
general optimization algorithm on the problem

min {ν(x) : ν(x) ≤ ν(x0), c(x) ≤ 0} ,

and assume that the critical point x∗ satisfies ν(x∗) < ν(x0). This option is attractive in
our case because the additional constraint ν(x) ≤ ν(x0) can be satisfied by adding a bound
to ν in the formulation (4.6).

Choosing a feasible starting point so that (6.2) holds requires some care because x0

depends on the level. If, however, we can choose a partition {tk} of [0, 1] such that the
starting point x0 = {p0(tk)} is feasible, then clearly (6.2) holds.
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Lemma 6.1 Assume that the bounds hk > 0 satisfy (4.2). If the path p0 connecting xawith
xb satisfies ∫ 1

0
‖p′0(t)‖ dt ≤ L, (6.3)

then there is a partition {tk} of [0, 1] such that

‖p0(tk+1)− p0(tk)‖ ≤ hk, 0 ≤ k ≤ m. (6.4)

Proof. We first define the partition {tk}. Given tk, define φ : R 7→ R by

φk(t) = ||p0(t)− p(tk)‖.

If φk(1) ≤ hk then we set tj = 1 for k ≤ j ≤ m. If, on the other hand, φk(1) > hk, then
there is a tk+1 ∈ (tk, 1) such that φk(1) = hk. This defines the partition {tk}. If at any
stage of the construction φk(1) ≤ hk, then (6.4) holds, since tm = 1. Otherwise,

‖p0(tk+1)− p0(tk)‖ = hk, 0 ≤ k < m,

and we need to show that ‖p0(1)− p0(tm)‖ ≤ hm. First we note that since

hk = ‖p0(tk+1)− p0(tk)‖ ≤
∫ tk+1

tk

‖p′0(t)‖ dt, 0 ≤ k < m,

the bound (6.3) on the length of p0 implies that

m−1∑
k=0

hk ≤
∫ tm

0
‖p′0(t)‖ dt ≤ L−

∫ 1

tm

‖p′0(t)‖ dt.

Hence, assumption (4.2) on the bounds hk proves that

‖p0(1)− p0(tm)‖ ≤
∫ 1

tm

‖p′0(t)‖ dt ≤ L−
m−1∑
k=0

hk = hm,

as desired. �

Lemma 6.1 shows that if p0 is a path of finite length and if L is an upper bound on
the length of p0, then we can choose a partition {tk} of [0, 1] such that the starting point
x0 = {p0(tk)} is feasible. Hence, (6.2) holds, and thus (6.1) is satisfied by any optimization
algorithm that decreases the value of ν.

We now show that the convergence results hold for coercive functions by assuming that
there is an r > 0 such that

f(x) > max {f [p0(t)] : t ∈ [0, 1]} , ‖x− xa‖ ≥ r, (6.5)

where p0 ∈ Γ is a fixed path. We could choose p0(t) = xa + t(xb − xa), but this condition
allows a more general choice of p0 ∈ Γ. We also note that, unlike (5.2), assumption (6.5)
does not imply that S is compact.

The following result is the analogue of Lemma 5.3 for condition (6.5).
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Lemma 6.2 Let f : Rn 7→ R be twice continuously differentiable on Rn, and assume that
the points xa and xb are separated by a closed set S such that (2.2) holds. Assume, in
addition, that l is bounded, independent of the level, and that the elastic string algorithm
generates iterates that satisfy (6.1). If the growth condition (6.5) holds, then there is no
sequence of levels M such that µki > 0 for all i with 0 ≤ i ≤ l.

Proof. The proof is similar to Lemma 5.3. Assume, on the contrary, that there is a sequence
of levels M such that µki > 0 for all i with 0 ≤ i ≤ l. Hence, the updating rules for L
guarantee that L→∞ as the level m increases. Since Lemma 5.2 guarantees that

l∑
i=0

‖xki+1
− xki‖ = L,

and since L→∞, we obtain that for m large enough,

max {‖xki − xa‖ : 1 ≤ i ≤ l} ≥ L

(2l + 1)
≥ r,

and thus assumption (6.5) on the behavior of f implies that

νm = f(xki) > max {f [p0(t)] : t ∈ [0, 1]} ,

for some index i. However, this contradicts requirement (6.1) on the elastic string algorithm.
�

As we have remarked, convergence of the elastic string algorithm for coercive functions
is a direct consequence of Lemma 5.3. We note this result for future reference.

Theorem 6.3 Let f : Rn 7→ R be twice continuously differentiable on Rn, and assume
that the points xa and xb are separated by a closed set S such that (2.2) holds. Assume,
in addition, that l is bounded, independent of the level and that the elastic string algorithm
generates iterates that satisfy (6.1). If the growth condition (6.5) holds, then the convergence
results (5.3) and (5.4) hold.

7 Computational Experiments

The elastic string algorithm can be used to find mountain passes by choosing the number
of breakpoints m and solving the constrained optimization problem (4.3) using a general
constrained optimization algorithm. Since this optimization problem has nm+ 1 variables
and 2m+ 1 constraints, large values of m can impose severe demands on the optimization
algorithm, in particular, when n is large. This concern motivates our study of the behavior
of the elastic string algorithm for modest values of m.

We expect that the elastic string algorithm will produce a rough approximation to
a mountain pass for small values of m. In the computational experiments, we evaluate
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this hypothesis by determining when the approximation x∗s produced by the elastic string
algorithm is a suitable approximation to Newton’s method for solving ∇f(x) = 0.

Newton’s method for ∇f(x) = 0 is locally and quadratically convergent if x∗s is suf-
ficiently close to a nondegenerate mountain pass x∗ and ∇2f is locally Lipschitzian. We
implemented Newton’s method with an Armijo line search, that is,

xk+1 = xk − αk∇2f(xk)−1∇f(xk),

where αk is the line-search parameter. Each Newton direction was calculated by using
a factorization of the Hessian matrix. Other methods for solving indefinite systems of
equations could also be applied. Since we expect the Hessian matrix to have one negative
eigenvalue at the mountain pass, using a Cholesky factorization or conjugate gradients is
inappropriate. We terminate Newton’s method when

‖∇f(xk)‖ ≤ τ, τ = 10−6.

The mountain pass determined in this manner is denoted by x∗. In most of the test cases,
the approximate mountain pass x∗s is close enough to x∗ so that the gradient norm ‖∇f(xk)‖
of the Newton iterates converges quadratically to zero.

Our benchmark problems were implemented in the AMPL [11] modeling language. The
optimization problem (4.3) was solved by using the versions of KNITRO [5] and LOQO [19]
available on the NEOS Server [17]. In general, both codes were able to find a solution to
the optimization problem (4.3) within the alloted number of iterations; we note in the text
any failures that occurred. We do not provide information on the relative performance on
these problems because this is not relevant to the results.

We checked that the mountain-pass x∗ had precisely one negative eigenvalue (Morse
index 1), as predicted by Theorem 2.5, by computing the two smallest eigenvalues of the
Hessian matrix. This analysis was performed in MATLAB using the Hessian evaluations
supplied by AMPL.

We tested the elastic string algorithm on benchmark chemistry problems that require the
computation of transition structures and reaction pathways. These problems are described
in Section 8. We also tested the elastic string algorithm on variational problems associated
with semilinear partial differential equations. These results are presented in Section 9.

We end this section by discussing the determination of mountain passes for the six-hump
camel back function defined by

f(ξ1, ξ2) =
(

4− 2.1ξ2
1 +

1
3
ξ4

1

)
ξ2

1 + ξ1ξ2 + 4(ξ2
2 − 1)ξ2

2 .

This function is frequently used to test global optimization algorithms, but it is also useful
because it is simple and yet the results obtained are fairly typical of the results obtained
for the application problems presented in the next two sections.

As shown in Figure 7.1, this function has six minimizers and six mountain passes. We
have tested the elastic string algorithm by choosing xa = (−1.5,−0.6) and selecting various
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Figure 7.1: Contours for the six-hump camel back function and the path profile.

values for xb, but we present results only for xb = (0.0, 0.8). We used a uniform partition
with

hk ≡ h =
2

m+ 1
‖xb − xa‖

and m = 20 breakpoints. The starting point for the constrained optimization algorithm
(breakpoints for the piecewise linear path) were initialized to xa.

Figure 7.1 presents a contour plot of the six-hump camel back function overlaid with
the path calculated by the elastic string algorithm, along with a plot of the path profile,
that is, a plot of the function values f(xk) for 1 ≤ k ≤ m.

The elastic string algorithm found an approximate mountain pass x∗s with a gradient
norm of ‖∇f(x∗s)‖ = 0.49. Newton’s method from x∗s required four iterations to obtain an
accurate mountain pass, and for all iterations the step length αk = 1.

The results obtained for the six-hump camel back function are fairly typical of the
behavior of the elastic string algorithm. For most problems the accuracy of x∗s is low and
directly related to the value of the bound h. However, the approximate mountain pass x∗s
provides a good starting point for Newton’s method, and convergence is obtained in a few
iterations, usually three or four iterations.

The path profile of function values in Figure 7.1 is also typical in the sense that two
points with the same maximum function value are found straddling a mountain pass. This
can be explained by noting that if the path p is known, then the elastic string algorithm
can be viewed as choosing a partition {τk} for [0, 1] that solves the optimization problem

min
{
ν(τ1, . . . , τm) : |τk+1 − τk| ≤ hk, 0 ≤ k ≤ m

}
,

where hk satisfies the quasi-uniform restriction (4.5),

ν(τ1, . . . , τm) = max {φ(τk) : 1 ≤ k ≤ m} ,

and φ is the mapping t 7→ f [p(t)]. Assume that φ is continuously differentiable, and let ν∗

be the value of this problem at an optimal partition. We cannot have φ(t) = ν∗ at a unique
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mesh point τ ∈ {τk} because a small perturbation of the mesh point yields a smaller value
for ν. This claim is clear if φ has a unique maximizer in (0, 1), but holds in general. Hence,
as shown in Figure 7.1, we have φ(t) = ν∗ for at least two mesh points. In most cases
φ(t) = ν∗ at precisely two points unless φ is constant on some line segment or φ is periodic.

We note that the piecewise linear path calculated by the elastic string algorithm is not
unique. Only the breakpoints with maximum function value are relevant when determining
an approximate mountain pass, and little can be said about other local maximizers that are
not global maximizers.

We also note that the eigenvalues of the Hessian at the approximate mountain pass
x∗s are usually relatively close to those of the mountain pass x∗. For the six-hump camel
back function the two smallest eigenvalues at x∗s were (−3.0, 9.2). These values changed to
(−6.1, 9.6) for the accurate mountain pass.

8 Transitions States and Reaction Pathways

Computational chemists are interested in calculating mountain passes when the function is
the potential energy surface of a chemical reaction. Such problems are of interest from an
optimization viewpoint because these potential energy surfaces are usually highly nonlinear
and have many minimizers.

We consider two problems proposed by Henkelman, Jóhannesson, and Jónsson [12]. In
the first problem the potential energy function models a reaction involving three atoms
with motion restricted to a line. The two local minimizers of this function correspond to
the reactants and products in the reaction, and the mountain pass between the reactants
and products is the transition state.

The potential energy function for this problem is defined in terms of functions Q that
model Coulomb interactions, and functions J for quantum mechanical interactions:

Qab(ξ1, ξ2) = 2.260(1.5e−3.884(ξ1−0.742) − e−1.942(ξ1−0.742))
Qbc(ξ1, ξ2) = 1.318(1.5e−3.884(ξ2−0.742) − e−1.942(ξ2−0.742))
Qac(ξ1, ξ2) = 1.605(1.5e−11.652 − e−5.826)
Jab(ξ1, ξ2) = 1.130(e−3.884(ξ1−0.742) − 6e−1.942(ξ1−0.742))
Jbc(ξ1, ξ2) = 0.659(e−3.884(ξ2−0.742) − 6e−1.942(ξ2−0.742))
Jac(ξ1, ξ2) = 0.820(e−11.652 − 6e−5.826).

The LEPS potential energy function is then defined by

V (ξ1, ξ2) = Qab(ξ1, ξ2) +Qbc(ξ1, ξ2) +Qac(ξ1, ξ2)−(
Jab(ξ1, ξ2)2 + Jbc(ξ1, ξ2)2 + Jac(ξ1, ξ2)2−

Jab(ξ1, ξ2)Jbc(ξ1, ξ2)− Jab(ξ1, ξ2)Jac(ξ1, ξ2)− Jbc(ξ1, ξ2)Jac(ξ1, ξ2)
)1/2

.

The final potential energy function used in [12] adds an additional term so that the final
potential energy function is

V1(ξ1, ξ2) = V (ξ1, 3.742− ξ1) + 0.405(ξ1 + 0.867ξ2 − 1.871)2.
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Figure 8.1: Contours and path profile for the LEPS potential.

See [12] for a more detailed description of this potential energy function.
The parameters for the elastic string algorithm were set as in the six-hump camel back

problem of Section 7. We used

hk ≡ h =
2

m+ 1
‖xb − xa‖,

with m = 20 breakpoints, and the breakpoints for the piecewise linear path were initialized
to xa.

Figure 8.1 presents a contour plot of the potential energy function with the path cal-
culated by the elastic string algorithm along with a plot of the function values f(xk) for
1 ≤ k ≤ m. These plots were obtained with xa and xb near the minimizers of f . We used
xa = (0.7, 1.3) and xb = (3.0,−1.2).

The elastic string algorithm with either LOQO or KNITRO solved this problem, but
LOQO found f(x∗s) = −0.87, while KNITRO obtained f(x∗s) = −0.97. The approximate
mountain pass x∗s had a relatively large gradient of ‖∇f(x∗s)‖ = 1.0, but in spite of this
Newton’s method converged in four iterations. The two smallest eigenvalues of the Hessian
matrix at x∗s are (−5.7, 0.68); these change to (−8.0, 0.66) at the accurate mountain pass.

In the second benchmark problem that appears in [12], a Gaussian function is added to
the LEPS potential near the site of the original mountain pass. The aim is to create two
saddle points. The Gaussian potential is then

V2(ξ1, ξ2) = V1(ξ1, ξ2) + 1.5 exp

(
−0.5

((
ξ1 − 2.02083

0.10

)2

+
(
ξ2 + 0.27288

0.35

)2
))

.

The contour plot of the Gaussian potential energy function in Figure 8.2 shows that this
potential energy function does have two saddle points.

The results obtained by the elastic string algorithm for this potential are similar to those
for the LEPS potential. For this problem ‖∇f(x∗s)‖ = 2.1, and the two smallest eigenvalues
of the Hessian matrix are (−1.6, 15.6) at x∗s and (−15.8, 4.3) at x∗. In this case, however,
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Figure 8.2: Contours and path profile for the Gaussian potential.

Newton’s method required five iterations to converge from x∗s, and the second iterate used
a line-search parameter of 0.5.

9 Mountain Passes for Variational Problems

The next set of computational experiments explores the behavior of the elastic string al-
gorithm on finite-dimensional approximations to the variational problem (3.1) discussed in
Section 2. Our aim is to show that the elastic string algorithm, with small values of the level
m, computes an approximation x∗s to a mountain pass that is also a suitable starting point
for Newton’s method. We want Newton’s method started at x∗s to converge quadratically
to a mountain pass x∗.

The choice of problems follows those of Chen, Zhou, and Ni [7], but as noted in the
introduction, our approach to computing mountain passes is different. We consider various
geometries for D to explore the behavior of the mountain passes for nonstandard geometries.
In particular, we use the Lane-Emden problem over the unit square, the singularly perturbed
Dirichlet problem over the unit circle, and the Henon problem on a domain consisting of
the unit circle with a smaller square cut out of the center. The domains and meshes used
for the singularly perturbed Dirichlet and Henon problems are shown in Figure 9.1. We
used homogeneous Dirichlet boundary conditions for all of these test problems.

We discretize the variational problem by using difference approximations based on a
triangularization of D. The finite-dimensional approximation is of the form

f(x) =
ne∑
k=1

fk(x),

where ne is the number of elements, fk : Rn 7→ R is an approximation to the integral∫
Tk

(
1
2‖∇u(s)‖2 − h[s, u(s)]

)
ds,
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Figure 9.1: Meshes for the singularly perturbed Dirichlet (left) and Henon (right) problems.

and Tk is the kth triangular element. The function fk depends only on the interior grid
points associated with Tk, while f depends on the n interior grid points.

As noted in Section 2, for these problems xa = 0 is a local minimizer of the finite-
dimensional approximation, and thus S = ∂B(xa, r) is a compact separating set for all
r > 0 sufficiently small. Since f(xa) = 0, any xb with f(xb) ≤ 0 satisfies the assumptions of
the mountain-pass theorem. Theorem 3.1 shows that any xb with ‖xb‖ large enough satisfies
f(xb) ≤ 0, but if ‖xb‖ is large, then L ≥ ‖xb−xa‖ must be large, and thus the bounds {hk}
are small only with large values of m.

In the numerical results xb is produced by first choosing an xc with f(xc) < f(xa), and
then setting τ > 0 to the smallest element in the set {µk : k ≥ 0}, where µ ∈ (0, 1), so that

f(xa + τ(xc − xa)) < f(xa).

Defining xb = xa + τ(xc − xa) yields an xb that can be significantly closer to xa than xc.
As a result, the bounds {hk} are relatively small for modest values of m.

We did not experiment with an adaptive choice of the bounds {hk} because our intention
is to present results for a basic implementation. We used a uniform partition with

hk ≡ h =
2

m+ 1
‖xb − xa‖, 0 ≤ k ≤ m.

The constrained optimization algorithms used to solve problem (4.3) require a starting
value (x0, ν0), and we used x0 = 0 and ν0 = 0. This starting point violates the constraints
associated with h0 and hm but is otherwise feasible. On the other hand, x0 = 0 is not a
good approximation to the mountain pass. The performance of the constrained optimization
algorithms used to solve (4.3) might be improved by using a better starting point, but we
wanted to show that the formulation (4.3) is suitable even if a poor starting point is chosen.

The literature on the critical points of the variational problem (3.1) is extensive. We
noted in Section 2 that if (3.4) holds, then (3.1) has nontrivial critical points u+ ≥ 0 ≥ u−.
In addition, Struwe [18, Theorem 6.6] points out that if t 7→ h(s, t) is even, then (3.1) has
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Figure 9.2: Path profile and mountain pass for the Lane-Emden problem.

an infinite number of critical points. This result is relevant because t 7→ h(s, t) is even
for the problems in our computational experiments. Of course, the elastic string algorithm
determines a mountain-pass solution, and this restricts the class of admissible solutions.
For example, a mountain-pass solution does not change sign in D for the problems in this
section. Chen, Zhou, and Ni [7] provide additional information on the theoretical properties
of the problems in this section.

The first set of computational results is for the Lane-Emden equation −∆u = u3 on
the unit square D = (−1, 1) × (−1, 1). As noted in Section 2, the variational functional
associated with this problem is∫

D

(
1
2
‖∇u(s)‖2 − 1

4
u(s)4

)
ds.

The elastic string algorithm with m = 10 finds an approximate mountain pass x∗s with
‖∇f(x∗s)‖ = 0.66, but with (−0.19,−0.0084) as the two smallest eigenvalues of the Hessian
at x∗s. Although the Hessian matrix had more than one negative eigenvalue, Newton’s
method converged in four iterations to the mountain pass x∗ in Figure 9.2. The two smallest
eigenvalues (−0.10, 0.027) of the Hessian at x∗ now have the proper signs.

The strategy of using Newton’s method from x∗s is questionable when the inertia of the
Hessian matrix is wrong. In this case, however, the second smallest eigenvalue is relatively
small, so it is not unreasonable to find an incorrect inertia. In the same vein, we note that
the elastic string algorithm with m = 20 produces an x∗s with the correct inertia.

Figure 9.2 presents a plot of the path profile drawn from the function values f(xk) for
0 ≤ k ≤ m+ 1, where the circled iterates have the correct inertia. This plot shows that the
maximum is achieved at two points, just as in the results of Sections 7 and 8. The ragged
nature of the plot for the Lane-Emden problem is due to the use of m = 10; a smoother
profile is obtained with higher values of m.

We next consider the singularly perturbed Dirichlet problem −ε2∆u = u3 − u with D
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Figure 9.3: Path profile and mountain pass for the singularly perturbed Dirichlet problem.

the unit circle in R2. For this problem the variational formulation is∫
D

(
ε2

2
‖∇u(s)‖2 +

1
2
u(s)2 − 1

4
u(s)4

)
ds,

so we can expect numerical difficulties as ε → 0. Chen, Zhou, and Ni [7] examine the the
behavior of the mountain pass as ε→ 0, but we explore only the case ε2 = 10−2.

The elastic string algorithm with m = 10 obtained the mountain pass in Figure 9.3.
In this case ‖∇f(x∗s)‖ = 0.14, and the two smallest eigenvalues of the Hessian at x∗s are
(−0.21, 0.0088). Thus, the Hessian matrix has one negative eigenvalue as desired. Moreover,
Newton’s method converged in four iterations to the solution shown in Figure 9.3, and the
two smallest eigenvalues of the Hessian at x∗ are (−0.065, 0.0096).

The path profile shown in Figure 9.3 achieves the maximum at several points. This
result is unexpected, since in all previous cases the maximum was achieved only at two
values. This result, however, is due to the poor resolution with small values of m. For this
problem the path profile is resolved with m = 40, and as seen in Figure 9.4, the path profile
achieves the maximum at only two points. We note that the plot on the left of Figure 9.4
shows the path profile for the whole path, while the plot on the right of the path profile for
breakpoints 5, . . . , 20 that lie in the interval [−0.5, 0.5].

We also note that the path profile in Figure 9.3 is not well determined, since the
mountain-pass level is small. In this case f(x∗s) = 8.2 × 10−4; hence, the barrier to be
crossed is unusually low and can create numerical difficulties. We can raise the value of
the barrier in a natural way by considering the functional u 7→ ε−2f(u), where f is the
functional in the original formulation, but we did not explore this option.

Results obtained with larger values of m show that the value of f(x∗s) increases as m
increases. In particular, f(x∗s) = 3.1× 10−2 for the singularly perturbed Dirichlet problem
with m = 40. This increase is to be expected because the subspace Γπ in (4.1) increases as
m increases.

The final problem is the Henon equation −∆u = ‖s‖u3 on a domain D that is the unit
circle with a smaller square cut out of the middle. Figure 9.1 (right) shows the mesh used
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Figure 9.4: Path profile (m = 40) for the singularly perturbed Dirichlet problem.

to discretize the variational functional∫
D

(
1
2
‖∇u(s)‖2 − ‖s‖

4
u(s)4

)
ds

associated with the Henon equation. The plot of the mountain pass in Figure 9.5 shows that
the solution lacks the symmetry of the preceding two problems. In general, the symmetry
properties of the domain D are reflected in the symmetry properties of the solution. For
example, Chen, Zhou, and Ni [7] noted that on an annular domain there is a solution that is
not rotationally symmetric; and since the domain is rotationally symmetric, the mountain-
pass solutions form a connected nontrivial set. In particular, the mountain-pass solutions
are not isolated. For our domain, which is not rotationally symmetric, there seem to be
four distinct mountain-pass solutions.

The elastic string algorithm with m = 10 produced an approximate mountain pass with
‖∇f(x∗s)‖ = 6.5, with the two smallest eigenvalues of the Hessian matrix being (−0.20, 0.20).
Newton’s method converged from x∗s but required ten iterations, indicating that the accu-
racy of x∗s was not adequate. The numerical results with m = 20 show an improvement in

0 1 2 3 4 5 6 7 8 9 10 11
0

20

40

60

80

100

120

140
 

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
0

2

4

6

8

10

 

Figure 9.5: Path profile and mountain pass for the Henon equation.
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the convergence of Newton’s method: in this case convergence from x∗s requires only five
iterations, with all step lengths αk = 1.

The results obtained with m = 10 appear in Figure 9.5. The path profile shows that
the maximum is achieved for more than two breakpoints because of the low accuracy of
the approximate mountain pass x∗s. We encountered a similar situation with the singularly
perturbed Dirichlet problem. Results obtained with m = 50 show that the maximum is
achieved at only two breakpoints.
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